В физике Эйнштейн мог в одно и то же время представлять объект в движении и в покое. Чтобы лучше осознать природу этого парадокса, он предложил аналогию, отражающую его суть. Физик указывал, что наблюдатель, который прыгнул с крыши и одновременно выпустил из рук какой-либо предмет, сочтет, что предмет по отношению к нему продолжает находиться в состоянии покоя.
Эйнштейн понимал, что прыгающий с крыши наблюдатель в своих координатах не обнаружит никакого свидетельства существования гравитационного поля. Это кажущееся отсутствие возникает даже несмотря на то, что именно гравитационное поле и ускоряет падение наблюдателя. Ученый говорил, что эта аналогия была самой счастливой идеей в его жизни, поскольку именно она вызвала к жизни более серьезную идею – общую теорию относительности. (Эйнштейн искал в природе аналогию, позволяющую внедрить теорию гравитации Ньютона в теорию относительности, чтобы та стала носить всеобщий характер.)
Луи Пастер открыл основной принцип иммунологии, наткнувшись на парадокс: некоторые зараженные холерой цыплята выживали. Когда их и здоровых птенцов заражали новым вирусом, то незараженные цыплята умирали, а зараженные вновь выживали. Увидев в неожиданной жизнестойкости цыплят проявление общего принципа, Пастер понял необходимость формулировки концепции, при которой выжившие птенцы были заражены и одновременно не заражены. Не отмеченная до этого инфекция каким-то образом спасала их от заболевания и смерти в результате нового заражения. Парадоксальная идея того, что имеющееся заболевание может предотвращать новые болезни, стала исходной для создания иммунологической науки.
Ротенберг обнаружил пример янусова мышления и в работах Нильса Бора. Бор считал, что, если вы одновременно держите в уме противоположные друг другу идеи, мышление переходит на новый уровень. Такое «подвешенное» мышление позволяет разуму действовать, создавать новые формы. Борьба противоположностей формирует условия для выработки новой точки зрения. Именно эта способность учитывать одновременно обе противоположности привела Бора к открытию принципа комплементарности – на первый взгляд противоречащему самому себе утверждению, что свет одновременно и волна, и частица.
Чтобы одновременно думать о противоположных понятиях, превратите тему размышлений в парадокс, а затем попытайтесь найти полезную аналогию.
В литейном производстве металл очищается пескоструйным способом. Однако песок, хотя и очищает металлические части, забивается в полости, и на удаление его оттуда уходит много времени и средств. Парадокс в том, что частицы должны быть «твердыми», чтобы очищать деталь, и «нетвердыми», чтобы можно было их легко извлекать. Аналог подобных «твердых» и «нетвердых» частиц – лед. Одно из решений, таким образом, – проводить очистку сухим льдом. Твердые частицы очистят детали, а затем случатся возгонка и испарение.
Допустим, вы хотите заработать кучу денег. Обратная сторона этого в том, что у вас мало амбиций. Парадокс: вы хотите зарабатывать деньги, но слишком ленивы, чтобы многое для этого сделать. Найдите аналогию, содержащую суть такого парадокса: например, я хочу получать свет, не используя электроэнергию. Решением будет применение естественной энергии Солнца. Теперь приложите этот принцип к проблеме лентяя, который хочет заработать деньги. Одно из решений – отправиться на южные острова и написать книгу о путешествии.
Далее следуют конкретные принципы решения проблем путем создания парадокса, нахождения аналогии и использования ее уникальных свойств для выработки оригинальных идей.
Генеральный директор заметил, что, когда его компания высоких технологий была небольшой, люди часто спонтанно и неофициально встречались. Во время этих встреч появлялись лучшие идеи. В результате быстрого роста компании подобное общение (и число хороших идей) сократилось. Он пробовал использовать обычные способы стимулирования креативности (собрания, обеды, вечеринки, круглые столы и т. д.), но они не помогали генерировать новые идеи. Директор хотел воссоздать спонтанную творческую обстановку.
1. Парадокс. Превратите проблему в парадокс. Одно из различий между творческими и обычными людьми заключается в их толерантности к противоположностям. Например, физик Нильс Бор был восхищен, когда обнаружил парадокс, согласно которому свет можно назвать и частицей, и волной. Это противоречие привело к открытию принципа дополнительности, за которое он получил Нобелевскую премию. Нужно спросить себя: какова противоположность проблемы? Затем вообразить, что и то и другое существует одновременно.
Пример: парадокс ситуации, в которой оказалась компания, состоял в том, что, если собрания не были спонтанными и неорганизованными, они не способствовали появлению новых идей.
2. Название книги. Резюмируйте парадокс в названии книги, охватывающем сущность и противоречие проблемы. Название должно состоять из двух слов, обычно из существительного и определения. Вот примеры таких заглавий:
• цель продаж: «Сфокусированное желание»;
• работники разного уровня: «Сбалансированный беспорядок»;
• сезонные циклы продаж: «Взаимосвязанные паузы»;
• регулирование рождаемости: «Надежные перебои»;
• природа: «Рациональная импульсивность».
Пример: в нашем случае генеральный директор резюмировал парадокс в названии книги «Неорганизованные собрания».
3. Аналогия. Найдите аналогию, отражающую сущность парадокса. Придумайте как можно больше аналогий и выберите наиболее подходящую.
Пример: генеральный директор нашел подходящую аналогию в природе. Он подумал о серебристых чайках, которые очень неорганизованно питаются отбросами, но успешно выживают.
4. Уникальная особенность. Какова уникальная особенность этой аналогии? Творческие идеи часто предполагают применение уникальных особенностей одного предмета к другому.
Пример: генеральный директор решил, что уникальная особенность его аналогии состоит в питании отбросами. Чайки собираются ради легкой добычи, когда рыбаки выбрасывают ненужную рыбу и куски рыбы назад в море.
5. Эквивалент. Используйте эквивалент этой уникальной особенности, чтобы прийти к новому пониманию.
Пример: эквивалент этой уникальной особенности мог бы состоять в том, чтобы заставить людей собираться вместе ради приличной, но недорогой еды.
6. Новая идея. Компания будет продавать недорогие деликатесные блюда в своем кафе. Дотируя стоимость деликатесной пищи, генеральный директор поощрит служащих собираться в кафе (подобно серебристым чайкам, привлеченным легкой добычей), чтобы в неофициальной обстановке пообщаться и обменяться идеями.
Уильям Гордон использовал эту стратегию для разработки чипсов Pringles. Перед компанией стояла задача создать новые картофельные чипсы и более эффективную упаковку, которая не потребует заполнять пакет количеством воздуха, превышающим объем самих чипсов. Парадокс состоял в том, что чипсы должны быть упакованы более компактно и при этом не ломаться. «Название книги», выражающее суть этого парадокса, было «Компактная неразрушаемость».
В качестве аналогии они выбрали укладку опавших листьев в мешок осенью. Когда вы пытаетесь засунуть сухие листья в полиэтиленовый пакет, сталкиваетесь с определенными трудностями. Но когда листья сырые (уникальная особенность), они мягкие и легко изменяют форму. Влажный лист принимает форму соседнего листа, оставляя лишь немного воздуха между ними. Смачивание и формовка сухой картофельной муки позволили решить проблему с упаковкой, и это положило начало чипсам Pringles.
В другом примере дизайнеры разрабатывали гибкую батарейку, которую можно было свернуть, как лист бумаги. Они начали с парадокса «твердой эластичной батарейки». Название книги звучало как «Бетонная эластичность». Аналогией оказались «мешки для мусора», а уникальной особенностью – то, что «мешки наполнены высокосортной пластмассой». Эта аналогия привела к идее внедрения жидкого электролита в инертную полимерную пластинку. Таким образом удалось создать ультратонкую гибкую батарейку, которую можно сворачивать и разворачивать, как пластиковый пакет. Батарея может использоваться в звукозаписывающей аппаратуре, мобильных телефонах, ноутбуках, пейджерах и игрушках. Можно даже создать «ткань на батарейках», способную заряжать медицинские аппараты.
Думать в обратную сторону
Большинство из нас привыкли превращать вопрос (2 + 2 =?) в ответ (4), соответствуя жесткому набору правил. Если вы, проходя мимо чьего-то стола, увидели калькулятор, на котором высвечивается 4, вы никогда не узнаете, результатом каких вычислений стала эта цифра. Что это было: 2 + 2, 3 + 1, 1 + 1 + 1 + 1, а может, 9–5 или 1239477 – 1239473? Способов получить в итоге 4 бесконечное множество.