Утром солнце, как обычно, поднялось и с присущим ему достоинством величественно осветило теплую землю. Там, где ночью пришельцы установили электрический барьер, теперь покоились груды костей и тела мертвых животных, свидетельствующие о дикости обитателей этой юной планеты. То здесь, то там лежали круглые черепа марсианин, говорящие о разуме, казалось, здесь покоятся предтечи существ, которые через миллионы лет будут править Землей.
Глупые земные твари сохранили планету для господства разума, которое наступит через целую вечность.
Согласно более или менее общепринятому мнению, когда человечество достигнет достаточных успехов в космической технологии, начнется освоение планет, и все будущие усилия будут направлены на освоение Марса, Венеры, Луны, а затем и планет других звезд.
Возможно, в конце концов так и будет. Но… сейчас мне кажется, что мы недооцениваем иную возможность.
По моему мнению, главным направлением развития индустрии, основанной на космической технологии, станет не освоение иных планет — но самого космоса. Я считаю, что главным применением космической технологии должно стать создание громадных промышленных комплексов, постоянно находящихся в космосе, где-то между Марсом и поясом астероидов.
Прежде всего мы никогда не сможем освоить космос, пока в нашем распоряжении не окажется нечто намного превосходящее по своим возможностям нынешние ракеты.
* * *
Таким образом, ракеты можно исключить из рассмотрения; они изначально непригодны в качестве промышленного инструмента. Они намного менее эффективны в качестве транспортного средства, чем вертолет, — а ведь никто не предполагает использовать вертолеты в качестве основы промышленной транспортной системы.
Так что любое промышленное использование космоса предполагает наличие космического двигателя, не являющегося ракетным. По крайней мере, это должно быть нечто, способное поднимать и перемещать тонны груза с практической экономической эффективностью тяжелого грузовика. Даже ядерные ракеты для этого не годятся; из-за проблемы реактивной массы даже ядерная ракета вынуждена стартовать с гигантским грузом, который попросту должен быть выброшен по дороге.
Итак: представим себе, что у нас есть некоторая разновидность настоящего космического двигателя. Не важно, каков принцип его действия — это может быть антигравитация или что-то еще. Мы имеем космический грузовик — а не ненадежную и сверхдорогую ракету. Он в состоянии перевозить тонны груза и работать в течение многих лет.
Станем ли мы осваивать Марс и/или Венеру?
А зачем?
То, чем люди пользуются, и в чем больше всего нуждаются, — это металлы, энергия и пища. Можно с абсолютной уверенностью утверждать, что ни одно земное пищевое производство не сможет экономично существовать ни на Марсе, ни на Венере… если только не изолировать его полностью от внешней среды. Металлы на этих планетах могут присутствовать в большом количестве; можно предположить, что Марс красный оттого, что он представляет собой сплошной кусок природного железа, покрывшегося на поверхности слоем ржавчины толщиной в шесть дюймов.
Кому это нужно? Зачем тащить железо из гравитационного поля Марса, если оно свободно плавает в поясе астероидов? Если мы собираемся выращивать пищу в замкнутых системах каждый раз, покидая Землю… почему бы не делать это там, где невесомость позволяет создать замкнутую систему дешево, легко и быстро?
И в то время как земные формы жизни могут не слишком хорошо чувствовать себя на этих планетах… местные формы жизни очень быстро могут приспособиться жить за счет нас. Зачем тратить усилия на борьбу с ними? В космическом городе будут лишь те формы жизни, которые мы выберем сами.
А энергия?
Тяжелая промышленность всегда развивалась при наличии трех факторов: дешевого сырья, легкого доступа к рынкам сбыта и дешевых источников энергии. В доиндустриальные времена дешевый источник энергии естественным образом означал дешевое питание для мускулов, животных или человека. Несколько позднее это стало означать энергию воды, а сейчас это означает топливо.
Усилия нынешних исследователей направлены на получение управляемой реакции термоядерного распада, так что потребности растущей промышленности в энергии могут быть удовлетворены.
В космосе эта проблема уже решена. Солнце производит энергию в течение миллиардов лет — и единственная причина того, что мы не можем использовать ее на Земле, состоит в том, что стоимость установки, необходимой для концентрации солнечного излучения, слишком велика.
Итак, давайте представим себе завод Астероидной Стальной Компании номер 7. Он находится на околосолнечной орбите, на расстоянии примерно в миллион миль дальше от орбиты Марса. Достаточно близко — в пределах ста или двухсот миль — движется по той же орбите десяток энергонакопителей. Они не выдерживают долго — всего лишь несколько месяцев — но они дешевы и просты в изготовлении. Смешивается несколько сотен фунтов синтетических веществ, и пока идет процесс полимеризации, в густую массу закачивается несколько галлонов водяного пара. Через час процесс завершается, и из толстой пластиковой пленки формируется пузырь диаметром в полмили. Внутрь пузыря через его стенку входит человек, помещает внутрь него термитную бомбу и снова выходит. Несколько секунд спустя пузырь превращается в сферическое зеркало. Еще несколько манипуляций, и получаются два зеркала диаметром в полмили, повернутых к Солнцу, — общей стоимостью примерно в тысячу долларов. К ним должно быть прикреплено небольшое устройство, которое не давало бы им улететь в космос под давлением отражаемых ими солнечных лучей и поддерживало бы их в оптимальном положении.
Луч — даже не слишком хорошо сфокусированный — одного из этих солнечных зеркал может за один прием разрезать астероид. Подтолкнем астероид к лучу, встанем сзади и схватимся за другой его конец. Итак, он сам толщиной в полмили? Ну и что? Несколько проходов луча, и никелево-стальной сплав начинает испаряться. Энергия дешева; мы получили не требующий никаких затрат термоядерный реактор, дающий нам всю необходимую энергию, и накопители энергии, которые почти ничего не стоят.
Мы получаем высококачественную никелевую сталь; другие металлы, естественно, доступны путем обычной вакуумной перегонки! Нарезанная на удобного размера куски, она может быть затем подвергнута любой обработке — прокату, ковке, литью и так далее, на станках Завода номер 7. Завод, конечно, построен из дешевого местного металла; лишь самые основные точные инструменты были когда-то доставлены с Земли. С тех пор они давно пришли в негодность и выброшены за ненадобностью.