MyBooks.club
Все категории

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.. Жанр: Математика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Дата добавления:
17 сентябрь 2020
Количество просмотров:
133
Читать онлайн
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. краткое содержание

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р. - описание и краткое содержание, автор Хофштадтер Даглас Р., читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.

Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.

Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.

Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.

Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Хофштадтер Даглас Р.

Черепаха: Ваша интуитивная вера понятна, но не всегда оправдана. Разумеется, во многих случаях вы совершенно правы — если мы чего-то не знаем, из этого еще не следует, что это вообще непознаваемо! Но есть и такие свойства целых чисел, для которых можно доказать существование конечной процедуры проверки, а также — что невозможно заранее определить, как долго эта процедура будет продолжаться.

Ахилл: В это трудно поверить. Словно сам черт забрался в божественно прекрасное здание натуральных чисел!

Черепаха: Может быть, вам будет приятно узнать, что совсем не легко определить свойства, для которых существует конечная, но не ПРЕДСКАЗУЕМО конечная процедура проверки. Большинство «естественных» свойств целых чисел допускают предсказуемо конечные процедуры. Например, так можно проверить, является ли число простым, квадратом или десятой степенью какого-либо числа.

Ахилл: Да, это нетрудно. Но мне любопытно узнать, что это за свойство, для которого существует конечная, но непредсказуемая процедура проверки?

Черепаха: Это для меня слишком сложно, в особенности, когда я такая сонная. Лучше приведу вам пример свойства, которое весьма легко определить, но для которого неизвестна конечная процедура проверки. Заметьте, я не хочу сказать, что она никогда не будет открыта, — просто пока она еще не найдена. Для начала надо выбрать какое-нибудь число — предоставляю эту честь вам, Ахилл!

Ахилл: Как насчет 15?

Черепаха: Превосходно. Вы начинаете с вашего числа; если оно НЕЧЕТНО, вы умножаете его на три и прибавляете 1. Если оно ЧЕТНО, вы берете его половину. После этого мы повторяем процесс. Назовем число, которое таким образом рано или поздно превратится в 1, ИНТЕРЕСНЫМ, и число, которое не станет 1, НЕИНТЕРЕСНЫМ.

Ахилл: Интересное ли число 15? Посмотрим:

15 НЕЧЕТНО, так что я превращаю его в 3n + 1: 46

46 ЧЕТНО, так что я делю его на два: 23

23 НЕЧЕТНО, так что я превращаю его в Зn + 1: 70

70 ЧЕТНО, так что я делю его на два: 35

35 НЕЧЕТНО, так что я превращаю его в Зn + 1: 106

106 ЧЕТНО, так что я делю его на два: 53

53 НЕЧЕТНО, так что я превращаю его в Зn + 1: 160

160 ЧЕТНО, так что я делю его на два: 80

80 ЧЕТНО, так что я делю его на два: 40

40 ЧЕТНО, так что я делю его на два: 20

20 ЧЕТНО, так что я делю его на два: 10

10 ЧЕТНО, так что я делю его на два: 5

5 НЕЧЕТНО, так что я превращаю его в Зn + 1: 16

16 ЧЕТНО, так что я делю его на два: 8

8 ЧЕТНО, так что я делю его на два: 4

4 ЧЕТНО, так что я делю его на два: 2

2 ЧЕТНО, так что я делю его на два: 1.

Ух ты! Ничего себе путешествьице, от 15 до 1! Но я все же достиг цели. Это значит, что 15 обладает свойством «интересности». Хотелось бы узнать, какие числа НЕинтересные…

Черепаха: Вы заметили, что в этом простом процессе числа то возрастают, то уменьшаются?

Ахилл: Я особенно удивился, когда после 13 шагов я получил 16 — число, всего на 1 большее того , с которого я начал! В каком-то смысле, я почти вернулся к началу — но в другом смысле, я был весьма далек от начала. Странно и то, что чтобы решить задачку, мне пришлось добраться до 160. Интересно, почему так получилось?

Черепаха: Потому что потолок у этой задачки бесконечно высок, и заранее невозможно сказать, как высоко нам придется забраться. На самом деле, возможно, что вам придется все время карабкаться вверх, и вверх, и вверх, и никогда не спускаться больше, чем на несколько шагов.

Ахилл: Правда? Наверное, такое возможно — но что за странным совпадением это было бы! Для этого нам должны все время попадаться нечетные числа, за редким исключением. Сомневаюсь, чтобы такое было возможно, хотя, конечно, я не мог бы в этом поклясться.

Черепаха: Проверьте-ка число 27. Имейте в виду, я ничего не обещаю. Но все-таки попробуйте когда-нибудь — просто так, для развлечения. И я посоветовала бы вам запастись для этого большим листом бумаги.

Ахилл: Гммм… Интересно… Знаете, мне все еще кажется странным ассоциировать интересность (или неинтересность) с начальным числом, поскольку совершенно ясно, что это — свойство всей системы чисел.

Черепаха: Я понимаю, что вы имеете в виду, но это ничем не отличается от высказывания «29 — простое число» или «золото — дорогой металл». Оба утверждения приписывают единственному объекту свойство, которым тот обязан контексту целой системы.

Ахилл: Вы, наверное, правы. Проблема «интересности» весьма непроста, так как величина чисел все время колеблется, то возрастая, то уменьшаясь. Здесь ДОЛЖНА быть какая-то регулярность, хотя на вид это выглядит довольно хаотично. Прекрасно понимаю, почему еще никто до сих пор не нашел для «интересности» такой процедуры проверки, которая обязательно кончается.

Черепаха: Кстати о кончающихся и некончающихся процедурах — это мне напоминает об одном из моих друзей; он сейчас работает над своей книгой.

Ахилл: Ах, как занимательно! Как же она называется?

Черепаха: «Медь, серебро, золото — этот неразрушимый сплав». Не правда ли, звучит интересно?

Ахилл: Честно говоря, я что-то не совсем понимаю. Что общего между собой у меди, серебра и золота?

Черепаха: Это ясно, как день.

Ахилл: Вот если бы книга называлась «Гориллы, серебро, золото» или «Эму, золото…» — тогда бы я еще мог понять…

Черепаха: Может быть, вы предпочли бы «Медь, серебро, бабуины»?

Ахилл: Безусловно! Но это действительное название какое-то совсем слабенькое. Никто его не поймет.

Черепаха: Я скажу моему другу. Он (как и его издатель) будет только рад поменять название на более завлекательное.

Ахилл: Приятно слышать. Но почему наш разговор напомнил вам об этой книге?

Черепаха: Ах, да. Видите ли, там будет Диалог, в котором автор постарается запутать читателей, заставив их искать конец.

Ахилл: Забавно. Как же он это сделает?

Черепаха: Вы, безусловно, замечали, как некоторые писатели стараются наращивать напряжение поближе к концу своих историй — но читатель, держа книгу в руках, ЗНАЕТ, что рассказ подходит к концу. Таким образом, у него есть дополнительная информация, которая действует как предупреждение. Напряжение и неизвестность немного подпорчены физической сущностью книги. Было бы гораздо лучше, если бы в конце романов писатели оставляли прокладку потолще.

Ахилл: Прокладку?

Черепаха: Именно; я имею в виду кучу печатных страниц, не имеющих никакого отношения к истории, но маскирующих ее скорое окончание.

Ахилл: А-а, понятно. Таким образом конец истории может отстоять на, скажем, пятьдесят или даже сто страниц от последней страницы книги?

Черепаха: Да. Это привнесло бы некоторый элемент сюрприза, поскольку читатель не будет знать заранее, сколько страниц относятся к прокладке и сколько — собственно к истории.

Ахилл: Такая система была бы эффективной, если бы не есть одна проблема. Представьте себе, что ваша прокладка была бы очевидной — скажем, чистые страницы, куча «А» или случайные буквы. Тогда она была бы совершенно бесполезной.

Черепаха: Согласна. Она должна быть похожа на обычные печатные страницы.

Ахилл: Но даже беглого взгляда на страницу из какой-либо истории зачастую хватает, чтобы отличить ее от страницы из другой истории.

Черепаха: Это верно. Я всегда представляла это так: вы кончаете одну историю и тут же пишете еще что-то, что весьма похоже на продолжение — но в действительности это только прокладка, никак не соотносящаяся с вашей историей. Эта прокладка — что-то вроде «конца после конца». В ней могут быть странные литературные идеи, совершенно не имеющие отношения к первоначальной теме.

Ахилл: Ловко! Но тогда вам не удастся сказать, где находится действительный конец. Он сольется с прокладкой.


Хофштадтер Даглас Р. читать все книги автора по порядку

Хофштадтер Даглас Р. - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Хофштадтер Даглас Р.. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.