MyBooks.club
Все категории

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
192
Читать онлайн
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

  (1) [ проталкивание

  (2)   <<P э Q>Λ<~P э Q>> аксиома Ганто

  (3)   <P э Q> разделение

  (4)   <~Q э ~P> контрапозиция

  (5)   <~P э ~Q> разделение

  (6)   <~Q э ~~P> контрапозиция

  (7)   [ снова проталкивание

  (8)     ~Q посылка

  (9)     <~Q э ~P> перенос строки 4

(10)     ~P отделение

(11)     <~Q э ~~P> перенос строки 6

(12)     ~~P отделение (строки 8 и 11)

(13)     <~P Λ ~~P> объединение

(14)     ~<P V ~P> Де Морган

(15)   ] выталкивание

(16)   <~Q э ~<P V~P>> правило фантазии

(17)   <<P V ~P> э Q> контрапозиция

(18)   [ проталкивание

(19)     ~P посылка (и результат!)

(20)   ] выталкивание

(21)   < э > правило фантазии

(22)   <P V ~P> правило замены

(23)   Q отделение (строки 22 и 17)

(24) ] выталкивание


Этот пример показывает, насколько мощно исчисление высказываний. Всего лишь за 24 шага мы логически вывели, что Q — иными словами, головы будут отрублены! (Зловещая примета: последнее использованное нами правило было правилом «отделения»…) Теперь, скажете вы, нет смысла продолжать коан, так как исход уже известен. Однако я передумал и не буду его прерывать — в конце концов, это настоящий дзен-коан! Итак, вот конец этого рассказа:

Оба монаха продолжали медитировать как ни в чем не бывало, словно они ничего не слышали. Тогда Ганто опустил топор и воскликнул: «Вы — настоящие дзен-буддисты!» Затем он вернулся к Токусану и рассказал о случившемся. «Я понимаю вашу идею», — сказал тот, — «но скажите мне, какова их идея?» «Тозан мог бы принять их в ученики, — ответил Ганто, — но они не должны быть приняты в ученики Токусаном».[14]

Понимаете ли вы мою идею? А как насчет идеи дзена?

Имеется ли разрешающий алгоритм для теорем?

Исчисление высказываний дает нам набор правил для производства таких высказываний, которые были бы истинными в любом из возможных миров. Именно поэтому все его теоремы звучат так просто, кажется, что они совершенно лишены содержания! С такой точки зрения, исчисление высказываний должно казаться пустой тратой времени, поскольку оно сообщает нам абсолютно тривиальные вещи. С другой стороны, это делается путем определения формы универсально истинных высказываний, что представляет основные истины вселенной в новом свете. Они не только фундаментальны, но и регулярны: их можно произвести, используя определенный набор типографских правил. Иными словами, все они сделаны из одного теста. Можете поразмыслить над тем, возможно ли произвести также и дзен-буддисткие коаны, пользуясь набором типографских правил.

Весьма важным здесь является вопрос о разрешающей процедуре — а именно, существует ли некий механический метод отличения теорем от не-нетеорем? Если да, то это будет означать, что теоремы исчисления высказываний не только рекурсивно перечислимы, но и рекурсивны. Оказывается, что алгоритм разрешения существует, и довольно интересный — таблицы истинности. Изложение этого метода увело бы нас слишком далеко в сторону; вы можете найти его почти в любой книге по логике. А как насчет дзен-буддистских коанов? Может ли существовать такая механическая процедура разрешения, которая отличала бы настоящий дзен-коан от всех остальных вещей?

Откуда мы знаем, что система непротиворечива?

До сих пор, мы только предполагали, что все теоремы, интерпретированные должным образом, производят истинные высказывания. Но знаем ли мы это наверняка? Можем ли мы это доказать? Иными словами, заслуживают ли наши интерпретации («и» для «Λ» и так далее) того, чтобы именоваться «пассивными значениями» символов? На это существуют два различных взгляда, которые можно назвать «осторожным» и «неосторожным». Я представлю это взгляды так, как я их понимаю; пусть их выразителей зовут, соответствено, «Осторожность» и «Неосторожность».

Осторожность: Мы будем знать наверняка, что при нашей интерпретации все теоремы получаются истинными, только тогда, когда сможем это доказать. Это вдумчивый и осторожный способ действия.

Неосторожность: Напротив, ОЧЕВИДНО, что все теоремы получаются истинными. Если вы в этом сомневаетесь, взгляните еще раз на правила системы. Вы увидите, что каждое правило заставляет символ действовать точно также, как должно действовать слово, им представляемое. Например, правило объединения заставляет символ «Λ» действовать как «и»; правило отделения заставляет «э» действовать также, как слова «если … то», и так далее. Если только вы не похожи в этом отношении на Черепаху, то легко узнаете в каждом правиле кодификацию схем, которыми пользуетесь в собственных мыслях. Поэтому, если вы доверяете собственным мыслям, вы ОБЯЗАНЫ верить в то, что все теоремы в интерпретации выходят истинными. Таково мое мнение. Я не нуждаюсь в дальнейших доказательствах. Если вы считаете, что какая-нибудь теорема может получиться ложной, значит вы думаете, что какое-то из правил неверно. В таком случае, покажите мне, какое именно?

Осторожность: Не могу, поскольку я не знаю точно, что там есть неверные правила — поэтому я не могу указать вам на одно из них Все же я могу вообразить себе следующую сцену. Следуя правилам, вы выводите теорему — скажем, x. Между тем, я, также следуя правилам, вывожу другую теорему — и предположим, у меня вышло ~x. Можете ли вы представить себе такое?

Неосторожность: Хорошо — представим себе, что такое произошло. Чем это вам помешает? Скажем, мы обе играем с системой MIU; у меня получилась теорема x, а у вас — xU. Можете вы представить такое?

Осторожность: Разумеется: и MI, и MIU — теоремы.

Неосторожность: И вас это не смущает?

Осторожность: Конечно, нет. Ваш пример просто смешон, поскольку теоремы MI и MIU не ПРОТИВОРЕЧАТ одна другой, в то время как строчки x и ~x в исчислении высказываний противоречивы.

Неосторожность: Хорошо — если только вы решили интерпретировать «~» как «не». Но что заставляет вас думать, что « должно быть интерпретировано именно так?

Осторожность: Сами правила. Их них видно, что единственной возможной интерпретацией для «~» является «не», единственной возможной интерпретацией для «Λ» — «и» и так далее.

Неосторожность: Иными словами, вы считаете, что правила описывают значения слов?

Осторожность: Именно так.

Неосторожность: И, несмотря на это, вы все еще цепляетесь за мысль, что обе x и ~x могут быть теоремами? Почему бы вам заодно не предположить, что ежи — это жабы, или что 1 равняется 2, или что луна сделана из зеленого сыра? Я, со своей стороны, не хочу даже и думать, что основные ингредиенты моего мыслительного процесса могут быть ошибочными — иначе мне пришлось бы усомниться в собственном анализе всего этого вопроса, и я бы совершенно запуталась.

Осторожность: Ваши аргументы притянуты за уши. Все же мне хотелось бы увидеть ДОКАЗАТЕЛЬСТВО того, что все теоремы истинны, или того, что x и ~x не могут быть теоремами одновременно.

Неосторожность: Желаете доказательства? По-моему, вы более хотите убедиться в непротиворечивости исчисления высказываний, чем в вашем собственном душевном здоровье. Любое мыслимое доказательство включало бы более сложные операции, чем те, что возможны в самом исчислении высказываний. И что бы это доказало? С вашим желанием доказать непротиворечивость исчисления высказываний вы напоминаете мне человека, который захотел выучить русский и потребовал для этого словарь, определяющий все простые слова через более сложные…

Снова Кэрролловский Диалог

Этот небольшой спор показывает, как трудно использовать логику и рассуждеения для защиты самой логики. В какой-то момент вы упираетесь в стенку, и вам ничего не остается, кроме как выкрикивать: «Я знаю, что я прав!» Мы снова столкнулись с вопросом, который Льюис Кэрролл так ярко проиллюстрировал в своем Диалоге: продолжать защищать схему собственного мышления до бесконечности невозможно. Рано или поздно наступает момент, когда приходится в нее просто поверить.


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.