Ахилл: Ну и волокита! Не знаю, как кому-то могут нравиться такие вещи…
(Вдруг, откуда ни возьмись, появляется Краб. Он стремительно подбегает к друзьям, указывая на огромный синяк под глазом.)
Краб: Приветик! Бонжурчик! Я сегодня как огурчик, только вот синяк — кошмар, не правда ли? Мне его наставил этот поляк, ужасный, скажу вам, пошляк. Хо! Да еще в такой чудесный денек! Я себе по парку гулял, никого не задирал; вдруг слышу — музыка небесная, полька расчудесная. Гляжу, а на скамье сидит девица, да такая, что нам с вами не пара; а в руках у нее — гитара. Я и сам, знаете ли, из музыкальной семьи: мой кузен рак — мужик не дурак! — всегда зимовал ничуть не ближе, чем в Париже. Он был придворным музыкантом короля — услаждал его величество художественным свистом, когда тот сидел с придворными за вистом. Любовь к музыке у нас, ракообразных, в крови… Понимаете теперь, почему я не удержался, на скамейку взобрался, и говорю на ушко девице: «Щипать струны вы, гляжу, мастерица! Позвольте мне, как музыканту, сделать вам комплимент — а также предложить свой аккомпанемент. Чтоб польке дать полнее звук, сыграем-ка в двенадцать рук!» Она как вскочит, да как завопит, что есть мочи! Тут откуда ни возьмись, явился этот здоровяк, этот поляк… Бах! Трах! Прямо в глаз попал — вот откуда этот фингал! Не думайте, что я трус — атаковать я не боюсь. Но по давней семейной традиции, крабы — мастера защитной диспозиции… Ведь мы, когда идем вперед, движемся назад. Это у нас в генах — переворачивать все задом наперед. Кстати, это мне напоминает… Я всегда спрашивал себя: «Что было раньше, Краб или Ген?» То есть, я хочу сказать: «Что было позже, Ген или Краб»? Я всегда переворачиваю все задом наперед, знаете ли — это у нас в генах. Ведь мы, когда идем вперед, движемся назад… Ох, и заболтался же я, друзья! Да еще в такой чудный денек, хо! Поползу себе, пожалуй. Приветик!
(И он исчезает так же внезапно, как и появился.)
Рис. 43. Кусочек одного из Крабьих Генов. Если спирали ДНК развернуть и положить рядом, то получится следующая картина: TTTTTTTCGAAAAAAA ... AAAAAAAGTTTTTTTT... Обратите внимание на то, что спирали одинаковы - разница только в том, что одна из них идет в обратном порядке. Эта черта определяет также музыкальную форму под названием ракоход, или «крабий канон.» Очень похожи на это и палиндромы — предложения, которые при прочтении задом наперед дают точно тот же результат. В молекулярной биологии подобные сегменты ДНК называются «палиндромами» — ко самом деле, более точным названием было бы «крабий канон». Этот сегмент ДНК не только «крабо-каноничен» — в его основной структуре также закодирована структура Диалога. Присмотритесь повнимательней!
Черепаха: Ну и волокита! Не знаю, как кому-то могут нравиться такие вещи…
Ахилл: Поговорим лучше о другом. Знаете ли вы, что я уже давно пытаюсь собрать полную коллекцию редких гравюр Эшера — хоть это и отнимает много времени, но я считаю, что лучшего хобби не найти.
Черепаха: Не знаю, не знаю… Я уверена только в том, что меня не волнуют споры о вкусах. Disputandum non est de gustibus.
Ахилл: Наши мнения по этому вопросу расходятся. Кстати, говоря о вкусах: несколько дней назад я был на концерте, где наконец, услышал «Крабий канон» вашего любимого композитора, И. С. Баха. Какая красота! Как ловко он переворачивает тему задом наперед! Но боюсь, что для меня Эшер всегда останется выше Баха.
Черепаха: Да вы, как я погляжу, филистер. По моему мнению, голландский вклад в эту область — значительно худшего вкуса, и я хочу попытаться вас в этом убедить.
Ахилл: Не стоит. Не желаете ли угоститься моими сигарами?
Черепаха: О, благодарю вас.
Ахилл: Кстати, в последнее время вы выглядите как огурчик.
Черепаха: Неужели? Гулять, знаете ли, весьма полезно для здоровья.
Ахилл: В такой денек приятно пройтись; пожалуй, я пойду домой пешочком.
Черепаха: Вы читаете мои мысли.
Ахилл: Всегда рад вас видеть.
Черепаха: И я вас тоже.
Ахилл: Приветствую, г-жа Ч.
РИС. 44. «Крабий канон» из «Музыкального приношения» И. С. Баха.
ГЛАВА VIII: Типографская теория чисел
«Крабий Канон» и косвенная автореференция
В «КРАБЬЕМ КАНОНЕ» есть три примера косвенной автореференции. Ахилл и Черепаха описывают известные им произведения искусства — и по случайному совпадению оказывается, что эти произведения построены по той же схеме, как и диалог, в котором они упоминаются. Вообразите мое удивление, когда я, автор, сам это заметил! Более того, краб описывает биологическую структуру, которая тоже имеет подобные свойства. Разумеется, можно прочитать и понять диалог, не заметив при этом, что он сделан в форме ракохода — но это было бы пониманием диалога только на одном уровне. Чтобы увидеть автореференцию, надо обратить внимание как на содержание, так и на форму диалога.
Построение Гёделя состоит из описания как формы, так и содержания строчек формальной системы, которую мы опишем в этой главе — Типографской Теории Чисел. Неожиданный поворот состоит в том, что при помощи хитроумного отображения, открытого Гёделем, форма строчек может быть описана в самой формальной системе. Давайте же познакомимся с этой странной системой, способной взглянуть сама на себя.
Что мы хотим выразить в ТТЧ
Для начала приведем некоторые высказывания, типичные для теории чисел; затем постараемся найти основные понятия, в терминах которых эти высказывания могут быть перефразированы. Далее эти понятия будут заменены индивидуальными символами. Необходимо заметить, что, говоря о теории чисел, мы имеем в виду только свойства положительных целых чисел и нуля (и множеств подобных чисел). Эти числа называются натуральными числами. Отрицательные числа не играют в этой теории никакой роли. Таким образом, слово «число» будет относиться исключительно к натуральным числам. Очень важно для вас, читатель, помнить о разнице между формальной системой (ТТЧ) и удобной, хотя и не очень строго определенной, старой ветвью математики — самой теорией чисел; я буду называть последнюю «Ч».
Вот некоторые типичные высказывания Ч — теории чисел:
(1) 5 — простое число.
(2) 2 не является квадратом другого числа.
(3) 1729 — сумма двух кубов.
(4) Сумма двух положительных кубов сама не является кубом.
(5) Существует бесконечное множество простых чисел.
(6) 6 — четное число.
Кажется, что нам понадобится символ для каждого из таких понятий, как «простое число», «куб» или «положительное число» — однако эти понятия, на самом деле, не примитивны. Например, «простота» числа зависит от его множителей, которые, в свою очередь, зависят от умножения. Кубы также определяются в терминах умножения. Давайте постараемся перефразировать те же высказывания в более элементарных терминах.
(1) Не существует чисел а и b больших единицы, таких, что 5 равнялось бы а×b
(2) Не существует такого числа b, что b×b равнялось бы 2.
(3) Существуют такие числа b и с, что b×b×b + с×с×с равняется 1729.
(4) Для любых чисел b и с больше нуля не существует такого числа а, что а×а×а = b×b×b + с×с×с.
(5) Для каждого а существует b, большее, чем а, такое, что не существует чисел c и d, больших 1 и таких, что b равнялось бы c×d.
(6) Существует число e такое, что 2×e равняется 6.
Этот анализ продвинул нас на пути к основным элементам языка теории чисел. Очевидно, что некоторые фразы повторяются снова и снова:
для всех чисел b существует число b, такое, что больше чем равняется умноженное на О, 1, 2,…
Большинство таких фраз получат индивидуальные символы. Исключением является «больше чем», которое может быть упрощено еще. Действительно, высказывание «а больше b» становится:
существует число с отличное от 0, такое, что а = b + с.
Символы чисел
Мы не будем вводить отдельного символа для каждого из натуральных чисел. Вместо этого у нас будет очень простой способ приписать каждому натуральному числу составной символ, так, как мы делали это в системе pr. Вот наше обозначение натуральных чисел.
нуль 0
один S0
два SS0
три SSS0
и т. д.
Символ S интерпретируется как «следующий за.» Таким образом, строчка SS0 интерпретируется буквально как «следующий за следующим за нулем.» Подобные строчки называются символами чисел.