MyBooks.club
Все категории

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
192
Читать онлайн
Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда краткое содержание

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - описание и краткое содержание, автор Даглас Хофштадтер, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать онлайн бесплатно

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - читать книгу онлайн бесплатно, автор Даглас Хофштадтер

один S0

два SS0

три SSS0

и т. д.

Символ S интерпретируется как «следующий за.» Таким образом, строчка SS0 интерпретируется буквально как «следующий за следующим за нулем.» Подобные строчки называются символами чисел.

Переменные и термины

Ясно, что нам нужен способ говорить о неопределенных, или переменных числах. Для этого мы будем использовать буквы а, b, с, d, e. Однако пяти букв будет недостаточно Так же, как для атомов в исчислении высказывании, нам требуется их неограниченное количество Мы используем похожий метод для получения большего количества переменных — добавление любого количества штрихов. Например:

e

d'

с"

b'''

a''''

все являются переменными.

В каком-то смысле, использовать целых пять букв алфавита — это слишком большая роскошь, так как мы могли бы легко обойтись просто буквой а и штрихами. Впоследствии я действительно опущу буквы b,c,d, и e — результатом будет более строгая версия ТТЧ, сложные формулы которой будет немного труднее расшифровать. Но пока давайте позволим себе некоторую роскошь! Как насчет сложения и умножения? Очень просто: мы будем использовать обычные символы «+» и «*». Однако мы также введем требование скобок (мы мало помалу углубляемся в правила, определяющие правильно построенные строчки ТТЧ). Например, чтобы записать «b плюс с» и «b, умноженное на с», мы будем использовать строчки:

(b + с)

(b*с)

В отношении скобок послабления быть не может; опустить их — значит произвести неправильно сформированную формулу. («Формула?» Я использую этот термин вместо слова «строчка» лишь для удобства. Формула — это просто строчка ТТЧ.)

Кстати, сложение и умножение всегда будут рассматриваться как бинарные операции, то есть операции, объединяющие не более, чем два числа. Таким образом, если вы хотите записать «1+2+3», вы должны решить, какое из двух выражений использовать:

(S0+(SS0+SSS0))

((S0+SS0)+SSS0)

Теперь давайте символизируем понятие равенства. Для этого мы просто используем «=». Преимущество этого символа, принадлежащего Ч — неформальной теории чисел — очевидно: его весьма легко прочесть. Неудобство же при его использовании напоминает проблему, возникавшую при использовании слов «точка» и «линия» в формальном описании геометрии: если ослабить внимание, то легко спутать обыденное значение этих слов с поведением символов, подчиняющихся строгим правилам. Обсуждая проблемы геометрии, я различал между обыденными словами и терминами — последние печатались заглавными буквами. Так, в эллиптической геометрии ТОЧКОЙ было объединение двух точек. Здесь такого различия не будет, поэтому читатель должен постараться не спутать символ с многочисленными ассоциациями, которые он вызывает. Как я сказал ранее о системе pr, строчка --- не является числом 3; вместо этого она действует изоморфно с числом 3, по крайней мере, при сложении. То же самое можно сказать и о строчке SSS0.

Атомы и символы высказываний

Все символы исчисления высказываний, кроме букв, с помощью которых мы получали атомы (P, Q, R), будут использованы в ТТЧ; при этом они сохранят ту же интерпретацию. Роль атомов будут играть строчки, которые, будучи интерпретированы, дадут равенства, такие как S0=SS0 или (S0×S0) = S0. Теперь у нас есть достаточно данных, чтобы перевести несколько простых суждений в запись ТТЧ:

2+3 равняется 4: (SS0+SSS0)=SSSS0

2+2 не равняется 3: ~(SS0+SS0)=SSS0

Если 1 равняется 0, то 0 равняется 1: <S0=0э0=S0>

Первая из этих строчек — атом; остальные — составные формулы. (Внимание: «и» во фразе «1 и 1 будет 2» — всего лишь еще одно обозначение «плюса» и должно быть представлено «+» (и необходимыми скобками).

Свободные переменные и кванторы

Все правильно сформированные строчки, приведенные выше, обладают следующим свойством: их интерпретация — либо истинное, либо ложное высказывание. Однако существуют правильно сформированные формулы, не обладающие этим свойством, такие, например, как:

(b+S0)=SS0

Ее интерпретация — «b плюс 1 равняется 2». Поскольку b не определено, то невозможно сказать, истинно ли данное высказывание. Это напоминает высказывание с местоимением, взятое отдельно от контекста, такое, как «Она неуклюжа.» Это высказывание не истинно и не ложно — оно просто ждет, чтобы его поставили в контекст. Поскольку она не истинна и не ложна, подобная формула зовется открытой, а переменная b называется свободной переменной.

Одним из способов превратить открытую формулу в замкнутую формулу или высказывание является добавление квантора — фразы «существует число b такое, что…» или фразы «для всех b». В первом случае, у вас получается высказывание:

Существует число b такое, что b плюс 1 равняется 2.

Ясно, что это истинно. Во втором случае, вы получите:

Для всех чисел bb плюс 1 равняется 2.

Ясно, что это ложно. Теперь мы введем символы для обоих кванторов. Два высказывания, приведенные выше, в ТТЧ будут выглядеть как:

Eb:(b+S0)=SS0 ( E означает «существует»)

Ab:(b+S0)=SS0 ( A означает «все»)

Важно отметить, что речь идет уже не о неопределенных числах; первое высказывание — это утверждение существования, второе — утверждение общности. Их значение не изменится, даже если мы заменим b на c:

Ec:(c+S0)=SS0

Ac:(c+S0)=SS0

Переменная, управляемая квантором, называется квантифицированной переменной. Две следующие формулы иллюстрируют разницу между свободной и квантифицированной переменной.

(b*b)=SS0   (открытая)

~Eb:(b*b)=SS0   (замкнутая - высказывание ТТЧ)

Первая формула выражает свойство, которое может быть присуще какому-либо натуральному числу. Разумеется, такого числа не существует. Этот факт выражен второй формулой. Очень важно понять разницу между строчкой со свободной переменной и строчкой, в которой переменная квантифицирована. Последняя строчка — либо истинна, либо ложна. В переводе на русский язык, строчка, где есть по крайней мере одна свободная переменная, называется предикатом. Предикат — это высказывание без подлежащего (или с подлежащим, выраженным местоимением, лишенным контекста). Например, высказывания:

«является предложением без подлежащего»

«было бы аномалией»

«читается вперед и назад одновременно»

«сымпровизировал по требованию шестиголосную фугу»

являются неарифметическими предикатами. Они выражают свойства, которыми обладают или не обладают определенные предметы или существа. С тем же успехом мы могли бы добавить «подлежащее-пустышку», например, «такой-то». Строчка со свободными переменными подобна такому предикату с подлежащим-пустышкой. Например:

(S0+S0)=b

означает «1 плюс 1 равняется чему-то». Это предикат с переменной b. Он выражает свойство, которым может обладать число b. Заменяя b на различные числа, мы получили бы последовательность формул, большинство которых выражало бы ошибочные суждения. Вот еще один пример разницы между открытыми формулами и высказываниями:

Ab:Ac:(b+c)=(c+b)

Эта формула, разумеется, выражает коммутативность сложения. С другой стороны:

Ac:(b+c)=(c+b)

— это открытая формула, поскольку b здесь свободно. Она выражает свойство, которым может обладать или не обладать число b, а именно — коммутативность по отношению ко всем числам с.

Примеры перевода высказываний

Теперь наш словарь, с помощью которого мы сможем выразить все высказывания теории чисел, полон. Чтобы научиться выражать сложные утверждения Ч и, наоборот, понимать значение правильно сформированных формул, необходимо много практиковаться. Поэтому мы обратимся к шести простым высказываниям, данным в начале, и попробуем перевести их на язык ТТЧ. Кстати, не думайте, что переводы, которые вы найдете далее, единственно возможные. На самом деле, существует бесконечное множество способов выразить каждое высказывание в ТТЧ.

Начнем с последнего высказывания: «6 — четное число». Переведем его в

более примитивные понятия: «Существует число e, такое, что 2, умноженное на e, равняется 6.» Это легко перевести в нотацию ТТЧ:

Ee:(SS0*e)=SSSSSS0


Даглас Хофштадтер читать все книги автора по порядку

Даглас Хофштадтер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда отзывы

Отзывы читателей о книге ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, автор: Даглас Хофштадтер. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.