«Исправить можно, но будет хуже…» (из разговора с портным)
Нужно ли искать другую интерпретацию квантовой механики? Мне кажется, что главное - вероятностная природа предсказаний - сохранится при любых изменениях теории. Квантовая механика вместе с теорией измерений представляет собой логически замкнутую и необыкновенно красивую теорию. Все попытки ее «усовершенствовать» пока оказывались несостоятельными и в лучшем случае ограничивались вопросом: как менее красиво и более сложно получить уже известные результаты квантовой механики? Мы сейчас увидим, что единственная более или менее последовательная попытка «исправления» противоречит опыту.
В период бурных споров о полноте квантовомехани-ческого описания возникла идея: не объясняется ли
неопределенность в поведении электрона тем, что его состояние зависит не только от импульса, координаты и проекции спина, но еще от каких-то внутренних скрытых параметров? Неопределенность результата, как и в статистической физике, возникает от произвола в значении этих параметров. В принципе, если бы скрытые параметры можно было определить, предсказания сделались бы детерминированными (определенными), как в классической механике.
Конечно, это очень неуклюжий и неприятный способ спасти детерминизм такой дорогой ценой - вводя лишние переменные. Тем более что поначалу удавалось только подтверждать уже известные квантовомеханические соотношения. Некоторое время казалось, что такой подход по своим следствиям неотличим от квантовой механики. Для единичного измерения игрой скрытых параметров удается получить совпадения с квантовой механикой. Однако при повторных измерениях это не всегда возможно.
Первое измерение так ограничивает область возможных значений скрытых параметров, что их свободы ко второму измерению уже недостаточно для согласия с квантовой механикой. Наиболее убедительно это показал Джон Белл в 1966 году. Для доказательства ему достаточно было предположить, что значения скрытых параметров в разделенных подсистемах независимы. Но ведь эти параметры только для того и вводились, чтобы избежать вероятностной «зависимости» разделенных объектов квантовой механики. Иначе говоря, утверждение Белла не вызывает сомнений.
Итак, было указано, при каких экспериментах можно увидеть различие между предсказаниями квантовой механики и теории скрытых переменных. Такой опыт был выполнен в 1972 году Стюартом Фридманом и Джоном Клаузером. Они наблюдали свет, испускаемый возбужденными атомами кальция. В условиях их эксперимента кальций испускал последовательно два кванта видимого света, которые можно было отличать с помощью обычного цветного фильтра. Каждый квант попадал в свой счетчик, проходя через поляриметр, который отбирал определенное направление поляризации. Изучалось число совпадений счетчиков как функция угла между направлениями поляризации двух квантов. Теория скрытых переменных предсказывает провалы на кривой, изображающей эту зависимость. На опыте не
только не оказалось никаких провалов, но вся экспериментальная кривая с поразительной точностью совпала с теоретической кривой, полученной из квантовой механики.
Итак, никаких скрытых параметров нет. Квантовая механика лишний раз подтвердилась. Для микрообъектов нет лапласовского детерминизма.
Как ни удивительно, парапсихологи восприняли этот результат как возможное обоснование экстрасенсорных явлений. Но сначала признание: я впервые услышал о теореме Белла и об опытах Фридмана и Клаузера от американского парапсихолога. Большинство физиков, и я в том числе, были убеждены в справедливости квантовой механики и настолько не доверяли идее скрытых параметров, что перестали следить за событиями в этой области.
Неосторожная фраза «две подсистемы остаются жестко связанными после удаления на большое расстояние» оказалась не такой уж невинной. Если забыть о вероятностной природе волновой функции, то можно подумать, что связь между подсистемами - физическая, тогда как она не материальная, а информативная, в смысле условной вероятности, о чем недавно и шла речь. Физические же системы, жестко связанные на больших расстояниях, - прямой путь к объяснению многих чудесных явлений. Между тем опыт Фридмана и Клаузера только подтвердил квантовую механику, в которой нет никаких нарушений физических принципов, - соблюдается причинность: причина раньше следствия; нельзя осуществить физическое взаимодействие без того, чтобы какое-либо поле не распространилось от передающего объекта к принимающему, и скорость распространения этого поля меньше или равна скорости света.
Еще один физический факт, который некоторые парапсихологи пытаются использовать, в такой же мере не имеет отношения к экстрасенсорным явлениям. Из релятивистской квантовой механики следует - и это наблюдается на опыте, что наряду с частицами существуют античастицы: вместе с электроном - позитрон, с протоном - антипротон. Эти античастицы - такие же физические объекты, как и их более привычные партнеры, и, как и полагается, они движутся вперед по времени. Однако существует очень красивое, но не физическое, а математическое следствие их родства с частицами: античастицу можно рассматривать как частицу, движущуюся в сторону прошлого. Условность этого утверждения видна из того, что можно было бы с тем же успехом двигать вспять по времени частицы.
Если понимать этот математический факт как физическое явление, то может прийти в голову физическая нелепость: раз позитрон - это электрон, пришедший к нам из будущего, нельзя ли с его помощью узнать, что с нами будет? Нельзя ли научно обосновать удачные предсказания гадалок? Или, поскольку позитрон, родившийся рядом, - электрон, который пришел не только из будущего, но и издалека, нельзя ли увидеть удаленные предметы?
Должен разочаровать сторонников чудесного: релятивистская квантовая механика, так же как и нерелятивистская, не дает никаких научных оснований для экстрасенсорных явлений. Будущее и в этой теории вытекает из прошлого и определяется, в согласии с причинностью, событиями, которые происходили до предсказываемого момента. Видеть на расстоянии можно только с помощью чего-то, аналогичного телевизору; должен быть источник какого-либо излучения, которое передает информацию в приемник и распространяется со скоростью, не большей, чем скорость света.
В квантовой физике, так же как и в классической, пока не видно никаких фактов, которые помогли бы понять или обосновать экстрасенсорные явления. Если эти явления существуют, то их обоснование следует искать вне физики.
Как работают физики-теоретики на первой, самой важной стадии работы, когда делается качественный анализ поставленной задачи? Как мы увидим, при этом почти без всяких вычислений получаются грубые соотношения между входящими в задачу величинами, прояс
ВЫЧИСЛЕНИЯ БЕЗ ВЫЧИСЛЕНИЙ
Если математика - это искусство избегать вычислений, то теоретическая физика - это искусство обходиться без математики.
Из разговоров
няется физическая картина явления и возникает проект ожидаемого решения. Следующая стадия - получение точных количественных соотношений с помощью математического аппарата теории - целиком опирается на первую. Не имея предположительного проекта решения, без качественного анализа нельзя приступать к поискам точного результата. Действительно, удается доказать только те утверждения, которые были заранее угаданы. Из этого правила почти не бывает исключений. Анри Пуанкаре писал: «Догадка предшествует доказательству. Нужно ли указывать, что именно так были сделаны все важные открытия?»
Один из главных элементов качественного анализа - решение задачи на упрощенных моделях, в которых отброшено все несущественное, - усложнять решенную задачу несравненно проще, чем сразу решать сложную.
В некоторых случаях многое проясняет простой размерный анализ - размерные оценки входящих в задачу величин и возможные соотношения между ними. Докажем, например, теорему Пифагора из размерных сообра
жений. Из размерности следует, что площадь прямоугольного треугольника можно записать как квадрат гипотенузы с2, умноженный на некую функцию угла f (а) (пусть для определенности а есть угол между гипотенузой с и большим из катетов). То же самое относится к площадям двух подобных прямоугольных треугольников, для которых гипотенузами будут катеты а и b исходного треугольника, а его высота, опущенная из прямого угла, есть общий катет. Поэтому
Сокращая на f (а), получаем теорему Пифагора.
Оценим период колебан-ий маятника. Предположим для простоты, что тяжелый груз с массой m подвешен на легком стержне, массой которого можно пренебречь. Прежде всего выясним, какие величины могут входить в выражение для периода колебаний. Поскольку сила, движущая маятник к положению равновесия, - это сила тяжести, то период может зависеть от ускорения силы тяжести g и от массы маятника т. Кроме того, может войти также длина маятника /. Разумеется, такие величины, как температура и вязкость воздуха, несущественны, если мы пренебрегаем затуханием маятника. Не войдет в задачу также и скорость вращения Земли, если мы не учитываем ускорения Кориолиса, которое возникает от движения точки подвески маятника вместе с Землей. Ничего не поделаешь, чтобы упростить задачу, надо знать, чем можно пренебречь! Из трех оставшихся величин - g, m, l - можно составить только одну комбинацию, имеющую размерность времени. Эта величина равна sqrt(l/g), а следовательно, период Т равен T=asqrt(l/g).