Услыхав эти новости, Резерфорд сказал, что это «едва ли не самое невероятное событие в моей жизни. Это почти так же невероятно, как стрелять 15-дюймовыми снарядами по бумажной салфетке и получать их рикошетом назад»[355]. Такой отзыв объясняется вот чем: вся его математика говорила ему, что должно быть в золотой фольге нечто немыслимо крошечное и мощное, чтобы возникали, пусть и редко, столь сильные отклонения в траектории. Вот так Резерфорд не прояснил модель Томсона – он установил, что модель Томсона ошибочна.
Эксперимент Резерфорда с золотой фольгой
Перед проведением эксперимента Марсденом весь этот проект казался несуразным – вроде той деятельности, от которой меня отговаривал Фейнман. Однако в течение века, последовавшего за этим экспериментом, его возносили как гениальный. И, разумеется, без него вряд ли возник бы «атом Бора», а это значит, что и непротиворечивая теория кванта возникла бы – если бы вообще возникла – на много лет позже. Что, в свою очередь, сильно повлияло бы на наш так называемый технический прогресс. Уж точно отсрочилась бы разработка атомной бомбы, а значит, ее не сбросили бы на Японию и тем спасли жизни многим-многим невинным японским гражданам, но, возможно, это стоило бы жизней многих-многих солдат, которые сгинули бы при вторжении союзников. Отложились бы многие другие изобретения – транзистор, например, а без него не началась бы компьютерная эра. Трудно в точности оценить все последствия, если бы тот единственный, с виду бессмысленный студенческий эксперимент не состоялся, но можно с уверенностью говорить, что мир сегодня выглядел бы несколько иначе. И вновь мы видим тонкую грань между странноватым чокнутым проектом и новаторской мыслью, которая меняет всё.
В дальнейшем Резерфорд курировал много других экспериментов, в которых Гейгер и Марсден пронаблюдали более миллиона вспышек. На собранных данных он составил свою теорию устройства атома, отличную от Томсоновой, но она все еще описывала электроны как обращающиеся по концентрическим орбитам тела, однако положительный заряд более не был рассеян, а наоборот – собран в крошечном центре атома. Гейгер с Марсденом, впрочем, вскоре каждый пошли своей дорогой[356]. Во время Первой мировой войны они воевали на противоположных сторонах, а во Второй мировой применяли свои знания против друг друга: Марсден трудился над новой технологией радара, а Гейгер, поддерживая нацистов, участвовал в разработке немецкой атомной бомбы.
Атом Резерфорда – модель, которой нас учат в средней школе: электроны вращаются вокруг ядра, как планеты – вокруг Солнца. Как и многие научные представления, это, если свести его к повседневным похожим примерам вроде школьного, смотрится неприхотливо, однако подлинная гениальность этой модели – именно в «технических» затейливостях, утерянных при усушке и утруске, неизбежных при составлении простых схем. Интуитивная картинка – вещь полезная, однако любую мысль в физике делают жизненной математические следствия. И потому физик должен быть не просто мечтателем, но и техником.
Предсказанное отклонение альфа-частиц: по Томсону (слева) и по Резерфорду (справа)
Резерфорду-мечтателю эксперимент подсказал, что львиная доля массы атома и весь его положительный заряд должны быть сосредоточены в центре его, в невероятно крошечном шарике заряженной материи, настолько плотной, что одна чашка ее будет весить в сто раз больше Эвереста[357]. (То, что ни вы, ни я и близко не такие тяжелые, – подтверждение факта, что ядро есть малюсенькая точка в центре атома, который в основном – пустое пространство.) Позднее Резерфорд назовет эту центральную часть атома ядром.
Резерфорд-техник одолел сложные математические расчеты и обнаружил: если картина, которую он себе представляет, действительно верна, в экспериментах должно было получаться именно то, что наблюдала его команда. Большинство быстрых и тяжелых альфа-частиц пролетит сквозь золотую фольгу, мимо крохотных атомных центров, и в результате траектория их полета изменится лишь слегка. Меж тем некоторые, пролетающие вблизи ядер, столкнутся с сильным полем и претерпят значительное отклонение от прямого маршрута. Мощь этого силового поля – прямо-таки из научной фантастики, как для нас – силовые поля из фильмов. Но пусть мы не имеем возможности генерировать поля такой силы в макромире, они существуют внутри атома.
Важный нюанс открытия Резерфорда: положительный заряд ядра сосредоточен в его центре, а не распределен равномерно по объему. Его представление, будто электроны вращаются вокруг ядра подобно планетам вокруг Солнца, напротив, было совершенно ошибочным – и он это понимал.
Во-первых, аналогия с Солнечной системой не учитывает взаимодействия между планетами этой системы, – как не учитывает она и взаимодействия между разными электронами внутри атома. Эти взаимодействия совсем не одинаковы. Планеты, у которых солидная масса, но никакого общего электрического заряда, взаимодействуют гравитационно; электроны, у которых есть заряд, а масса мала, взаимодействуют электромагнитно. Сила тяготения чрезвычайно слаба, и потому притяжение планет друг к другу настолько мало, что для многих практических целей им можно пренебречь; электроны же воздействуют друг на друга мощнейшим электромагнитным отталкиванием, которое быстро нарушило бы аккуратненькие круговые орбиты.
Во-вторых – и это вопиющая нестыковка, – и планеты, и электроны, двигайся они по кругу, испускали бы волны энергии: планеты – гравитационной, электроны – электромагнитной. Опять-таки, сила тяготения очень слаба, и за миллиарды лет существования нашей Солнечной системы планеты потеряли ну, может, несколько процентов своей энергии. (На самом деле об этом эффекте и не догадывались, пока в 1916 году его не предсказала теория тяготения Эйнштейна.) Электронное же взаимодействие настолько сильно, что, согласно теории Максвелла, движущиеся по орбите электроны Резерфорда испустят всю свою энергию и плюхнутся на ядро примерно за одну стомиллионную секунды. Иными словами, если бы модель Резерфорда была верна, Вселенной в известном нам виде не существовало бы.
Вот она, расчетная оценка, какая запросто может потопить любую теорию: объявление о том, что Вселенной не существует. Так отчего же тогда относиться к такой теории серьезно?
Здесь возникает еще одна важная особенность развития науки: большинство теорий – не потрясающие новости планетарного масштаба, а, скорее, частные модели, нацеленные на описание конкретной ситуации. И потому, даже если в них есть недочеты, и сам автор модели знает, что не во всех случаях она работает, польза от нее все равно может быть.
В случае с атомом Резерфорда физики, занятые изучением атома, оценили, что эта модель дает точные прогнозы устройства ядра, и постановили, что дальнейшие эксперименты проявят, каких ключевых фактов не достает, чтобы разобраться, как во всё это встроены электроны и почему атом стабилен. Неочевидно было другое: атому требовалось не просто объяснение похитрее – нужно было революционное объяснение. Бледный и скромный Нильс Бор, однако, смотрел на все иначе. Юному Бору атом Резерфорда и его противоречия виделись стогом сена, в котором притаилась золотая иголка. И он был исполнен решимости ее найти.
* * *
Бор задался вопросом: если атом не испускает волн энергии, как того требует классическая теория (по крайней мере, согласно модели Резерфорда), может ли так быть, что атом не подчиняется классическим законам? Следуя этому рассуждению, Бор обратился к работе Эйнштейна о фотоэлектрическом эффекте. Он задумался, что может получиться, если включить атом в представление о кванте. То есть а что если атом, как световые кванты Эйнштейна, может иметь энергию лишь определенного значения? Эта мысль привела его к пересмотру модели Резерфорда и созданию того, что впоследствии станет называться Боровской моделью атома.
Бор применил этот подход к простейшему атому – атому водорода, состоящему из одного электрона, обращающегося вокруг ядра, которое представляет собой одинокий протон. Трудность этого предприятия1 можно проиллюстрировать фактом, что в те поры такое простое устройство атома водорода не было очевидным: из серии экспериментов, проведенных Томсоном, Бору пришлось сделать вывод, что у водорода всего один электрон.
Ньютонова физика дает расчетную оценку, что электрон может обращаться по орбите вокруг ядра (которое в случае водорода – просто протон) на любом расстоянии, если скорость и энергия его имеют подходящие значения, определяемые этим расстоянием. Чем меньше расстояние от электрона до протона, тем ниже должна быть энергия атома. Однако предположим, в духе Эйнштейна, что собираемся воспротивиться теории Ньютона, введя новый закон, повелевающий атому – по некой неведомой пока причине – иметь не какое попало значение энергии, а лишь взятое из дискретного набора возможностей. Поскольку радиус орбиты определяется энергией, это ограничение на допустимые значения энергии означает ограничение возможных значений радиусов орбит, по которым может перемещаться электрон. Сделав такое допущение, мы говорим, что энергия атома и радиусы электронных орбит квантуются.